Solar + Storage for Community Resiliency Feasibility Study
Goals

STUDY GOALS

• Increase resiliency in SF’s emergency response plans
• Expand market for solar + storage
• Create roadmap for other cities

TODAY’S GOALS

• Inform on project status
• Set stage for future engagement
Study Overview

BUDGET
• 3 year study
• USDOE Grant: $1.3M

DELIVERABLES
• Potential Site Case Studies
• Roadmap and Best Practice Guide
• Planning tools
 • www.solarresilient.org

QUESTIONS TO ANSWER
• Are solar + storage systems technically feasibly? Yes
• Is there a commitment to site selection? No
• Is this a Capital Planning project? No
• How do we pay for the systems? Unknown
Plan: 3-7 Day Electricity Outage

Figure 1: Estimated recovery times for critical San Francisco infrastructure after an earthquake (adapted from the San Francisco Lifelines Interdependency Study).
Project Roadmap

1. Identify Stakeholders and Champions
2. Planning for Resilience: Shelters and Hazard Plans
3. Identifying the Best Sites for Resilient Shelters
4. Walking the Site and Assessing Critical Loads
5. Microgrids vs. Stand-Alone Systems
6. Sizing Solar and Storage
7. Portfolio Financing
Stakeholder Engagement

- Public Works
- Emergency Response
- Public Health
- Parks and Recreation
- Education
- Mayor’s Office
- Fire
- Police
Potential Site Selection

ARUP Solar+Energy Storage for Resiliency
spatial data viewer

Legend

Layers

- ✔ Hazus Results
- ✔ Critical Infrastructure
 - ✔ Primary NGO Kitchens - 2015
 - ✔ NERT Staging Location
- ✔ All Facilities
- ✔ Facilities with Critical Power Need
- ✔ Facilities with Generators
- ✔ Medical Assets
- ✔ Microgrids
 - ✔ Selected Sites
 - ✔ Original Sites Under Consideration
- ✔ City Data
- ✔ Hazards
 - C05 - San Andreas
 - C06 - Hayward
 - ✔ C07 - Soil Liquefaction
 - C08 - Landslide
 - ✔ C09 - Tsunami
 - C13 - Wildfire
 - C14 - Reservoir Inundation
 - C18 - Heat Vulnerability

Bookmarks

identify

Find
Microgrids → Individual Systems
Figure 5: Shelters used for load analysis for solar and storage evaluation
Site Investigation: Identify Critical Loads

- **Appliances**: How will each appliance be used after a disaster?
- **Telecom**: Are wifi, radio, servers, and cell phones required?
- **Solar PV**: Is the roof structurally sound and unshaded?
- **Existing**: Are the emergency circuits already separated?
- **HVAC**: Is heating or cooling required, and is it electric?
- **Computers**: How many are required and on what schedule?
- **Lighting**: Where is it required, and how will it be controlled?
Detailed Case Studies

Figure 17: Thurgood Marshall High School

Figure 18: Marina Microgrid

Figure 19: Hamilton Recreational Center

Figure 20: Maxine Hall Health Center
Detailed Case Study: HRC

Figure 40: Typical 24 hour electrical profile of HRC.

<table>
<thead>
<tr>
<th></th>
<th>Existing PV (kW)</th>
<th>New PV Required (kW)</th>
<th>Roof Area for New PV (sf)</th>
<th>Parking Area for New PV (sf)</th>
<th>Battery Size (Power, kW)</th>
<th>Battery Size (Energy, kWh)</th>
<th>Inverter Size (kW)</th>
<th>Battery Space Required (cu. ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>0</td>
<td>54</td>
<td>3,600</td>
<td>0</td>
<td>83</td>
<td>330</td>
<td>84</td>
<td>280</td>
</tr>
<tr>
<td>Worst-Case</td>
<td>0</td>
<td>130</td>
<td>8,900</td>
<td>0</td>
<td>103</td>
<td>410</td>
<td>106</td>
<td>350</td>
</tr>
</tbody>
</table>
Figure 41: Proposed Equipment Areas—White rectangles are identified PV areas and yellow is the storage location.
Jessie Denver
Energy Program Manager
Jessie.Denver@SFGov.org

© 2014 SF Environment All Rights Reserved
The author of this document has secured the necessary permission to use all the images depicted in this presentation. Permission to reuse or repurpose the graphics in this document should not be assumed nor is it transferable for any other use. Please do not reproduce or broadcast any content from this document without written permission from the holder of copyright.